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Let C be a closed, convex subset of a uniformly convex Banach space whose
norm is uniformly Gâteaux differentiable and let T be an asymptotically nonexpan-
sive mapping from C into itself such that the set F(T ) of fixed points of T is
nonempty. In this paper, we show that F(T ) is a sunny, nonexpansive retract of C.
Using this result, we discuss the strong convergence of the sequence [xn] defined
by xn=an x+(1&an) 1�(n+1) �n

j=0 T j xn for n=0, 1, 2, ..., where x # C and [an]
is a real sequence in (0, 1]. � 1999 Academic Press

1. INTRODUCTION

Let C be a subset of a Banach space. A mapping T from C into E is said
to be nonexpansive if &Tx&Ty&�&x& y& for each x, y # C. A mapping T
from C into itself is said to be asymptotically nonexpansive if there exists
a sequence [kn] such that limn kn�1 and &T nx&T ny&�kn &x& y& for
each x, y # C and n=0, 1, 2, ... .

Let C be a closed, convex subset of a Banach space E. Let T be a non-
expansive mapping from C into itself such that the set F(T) of fixed points
of T is nonempty, let x be an element of C and for each t with 0<t<1,
let xt be the unique point of C which satisfies xt=tx+(1&t) Txt . Browder
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[2] showed that [xt] converges strongly to the element of F(T) which is
nearest to x in F(T ) as t a 0 in the case when E is a Hilbert space. Reich
[8] extended Browder's result to the case when E is a uniformly smooth
Banach space and he showed that F(T ) is a sunny, nonexpansive retract
of C, i.e., there exists a nonexpansive retraction P from C onto F(T ) such
that P(Px+t(x&Px))=Px for each x # C and t�0 with Px+t(x&Px)
# C. Recently, using an idea of Browder [2], Shimizu and Takahashi [10]
studied the convergence of another approximating sequence for an asymptoti-
cally nonexpansive mapping. Let T be an asymptotically nonexpansive
mapping with Lipschitz constants [kn] such that the set F(T) of fixed
points of T is nonempty. Let 0<a<1, let bn=1�n �n

j=1(1+|1&kj |+e& j)
and let an=(bn&1)�(bn&1+a) for n=1, 2, ... . Let x be an element of C
and let xn be the unique point of C which satisfies xn=anx+(1&an) 1�n
�n

j=1 T j xn for n=1, 2, ... . They showed that [xn] converges strongly to the
element of F(T ) which is nearest to x in F(T ) in the case when E is a
Hilbert space.

In this paper, we extend Shimizu and Takahashi's result to a Banach
space. For an asymptotically nonexpansive mapping T, we show that the
set F(T ) of fixed points of T is a sunny, nonexpansive retract of C and the
sequence [xn] defined above converges strongly to an element of F(T ).
Our results are the following:

Theorem 1. Let C be a closed, convex subset of a uniformly convex
Banach space whose norm is uniformly Gâteaux differentiable and let T be
an asymptotically nonexpansive mapping from C into itself such that the set
F(T ) of fixed points of T is nonempty. Then F(T ) is a sunny, nonexpansive
retract of C.

Theorem 2. Let C be a closed, convex subset of a uniformly convex
Banach space whose norm is uniformly Gâteaux differentiable, let T be an
asymptotically nonexpansive mapping from C into itself with Lipschitz
constants [kn] such that the set F(T ) of fixed points of T is nonempty and
let P be the sunny, nonexpansive retraction from C onto F(T ). Let [an] be
a real sequence such that

0<an�1, lim
n � �

an=0, and lim
n � �

bn&1
an

<1,

where bn=1�(n+1) �n
j=0 k j for n=0, 1, ... . Let x be an element of C and let

xn be the unique point of C which satisfies

xn=an x+(1&an)
1

n+1
:
n

j=0

T jxn (1.1)
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for n�N0 , where N0 is a sufficiently large natural number. Then [xn]
converges strongly to Px.

Remark. The inequality limn(bn&1)�an<1 implies that there exists a
natural number N0 such that (1&an) bn<1 for n�N0 . So for n�N0 ,
there exists the unique point xn of C which satisfies (1.1), since the
mapping Tn from C into itself defined by Tn u=anx+(1&an) 1�(n+1)
�n

j=0 T j u satisfies &Tn u&Tnv&�(1&an) bn &u&v& for each u, v # C.

In the case when T is nonexpansive, we have the following:

Theorem 3. Let C be a closed, convex subset of a uniformly convex
Banach space whose norm is uniformly Gâteaux differentiable, let T be a
nonexpansive mapping from C into itself such that the set F(T) of fixed
points of T is nonempty and let P be the sunny, nonexpansive retraction from
C onto F(T). Let [an] be a real sequence such that 0<an�1 and an � 0.
Let x be an element of C and let xn be the unique point of C which satisfies
(1.1) for n=0, 1, ... . Then [xn] converges strongly to Px.

2. PRELIMINARIES AND NOTATIONS

Throughout this paper, all vector spaces are real and we denote by N,
the set of all nonnegative integers. For a real number a, we also denote
max[a, 0] by (a)+ . We denote by 2n, the set [*=(*0 , ..., *n): *i�0,
�n

j=0 *j=1] for n # N. For a subset C of a Banach space, we denote by
co C, the convex hull of C.

Let E be a Banach space and let r>0. We denote by Br , the closed ball
in E with center 0 and radius r. E is said to be uniformly convex if for each
=>0, there exists $>0 such that &(x+ y)�2&�1&$ for each x, y # B1 with
&x& y&�=. Let C be a subset of E, let T be a mapping from C into E and
let =>0. By F(T) and F=(T ), we mean the sets [x # C : x=Tx] and
[x # C : &x&Tx&�=], respectively. Let k�0. We denote by Lip(C, k), the
set of all mappings from C into E satisfying &Tx&Ty&�k &x& y& for each
x, y # C. We remark that Lip(C, 1) is the set of all nonexpansive mappings
from C into E. The following is a useful proposition due to Bruck [5]:

Proposition 1. Let C be a closed, convex subset of a uniformly convex
Banach space. Then for each R>0, there exists a strictly increasing, convex,
continuous function #: [0, �) � [0, �) such that #(0)=0 and

# \"T \ :
n

j=0

*j xj+& :
n

j=0

*j Txj"+� max
0� j<k�n

(&x j&xk&&&Txj&Txk&)

for all n # N, * # 2n, x0 , ..., xn # C & BR , and T # Lip(C, 1).
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Let + be a continuous, linear functional on l� and let (a0 , a1 , ...) # l�.
We write +n(an) instead of +((a0 , a1 , ...)). We call + a Banach limit [1] when
+ satisfies &+&=+n(1)=1 and +n(an+1)=+n(an) for each (a0 , a1 , ...) # l�.
For a Banach limit, we know that

�
n � �

an�+n(an)� lim
n � �

an for all (a0 , a1 , ...) # l�. (2.1)

We also know the following from Lemma in [11] and its proof ; see also
[9, pp. 314�315]:

Proposition 2. Let C be a closed, convex subset of a uniformly convex
Banach space E. Let [xn] be a bounded sequence of E, let + be a Banach
limit and let g be a real valued function on C defined by

g( y)=+n &xn& y&2 for each y # C.

Then g is continuous and convex, and g satisfies lim&y& � � g( y)=�.
Moreover, for each R>0 and =>0, there exists $>0 such that

g \y+z
2 +�

g( y)+ g(z)
2

&$

for all y, z # C & BR with &y&z&�=.

Let E$ be the topological dual of E. The value of y # E$ at x # E will
be denoted by (x, y). We also denote by J, the duality mapping from E
into 2E$, i.e.,

Jx=[ y # E$: (x, y)=&x&2=&y&2] for each x # E.

Let U=[x # E : &x&=1]. E is said to be smooth if for each x, y # U, the
limit

lim
t � 0

&x+ty&&&x&
t

(2.2)

exists. The norm of E is said to be uniformly Gâteaux differentiable if for
each y # U, the limit (2.2) exists uniformly for x # U. E is said to be
uniformly smooth if the limit (2.2) exists uniformly for x, y # U. It is well
known that if E is smooth then the duality mapping is single-valued and
norm to weak star continuous. In the case when the norm of E is uniformly
Gâteaux differentiable, we know the following from [12, Lemma 1]; see
also [6, p. 586]:
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Proposition 3. Let C be a convex subset of a Banach space E whose
norm is uniformly Gâteaux differentiable. Let [xn] be a bounded subset
of E, let z be a point of C and let + be a Banach limit. Then

+n &xn&z&2=min
y # C

+n &xn& y&2

if and only if

+n( y&z, J(xn&z)) �0 for all y # C.

Let C be a convex subset of E, let K be a nonempty subset of C and let
P be a retraction from C onto K, i.e., Px=x for each x # K. A retraction
P is said to be sunny if P(Px+t(x&Px))=Px for each x # C and t�0
with Px+t(x&Px) # C. If the sunny retraction P is also nonexpansive,
then K is said to be a sunny, nonexpansive retract of C. Concerning sunny,
nonexpansive retractions, we know the following [3, 7]:

Proposition 4. Let C be a convex subset of a smooth Banach space, let
K be a nonempty subset of C and let P be a retraction from C onto K. Then
P is sunny and nonexpansive if and only if

(x&Px, J( y&Px))�0 for all x # C and y # K.

Hence there is at most one sunny, nonexpansive retraction from C onto K.

3. PROOF OF THEOREMS

To prove Lemmas 1, 2, 3 below, we use the methods employed in [4, 5].

Lemma 1. Let C be a closed, convex subset of a uniformly convex Banach
space. Then for each R>0 and =>0, there exists '>0 such that

(co(F'(T) & BR)+B') & C/F=(T )

for all T # Lip(C, 1+').

Proof. Let R>0. Then there exists a function # which satisfies the
conditions in Proposition 1. Let =>0. Choose '>0 such that (3+') '+
(1+') #&1(2(1+R) ')�=. Let T # Lip(C, 1+'). Pick * # 2n, x0 , ..., xn #
F'(T ) & BR and y # B' such that �n

i=0 *ix i+ y # C. Since 1�(1+')
T # Lip(C, 1), we have
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# \ 1
1+' "T \ :

n

i=0

*ix i+& :
n

i=0

* iTxi"+
� max

0�i< j�n \&xi&x j&&
1

1+'
&Tx i&Tx j&+

� max
0�i< j�n \&xi&Txi &+&x j&Txj&+

'
1+'

&Txi&Txj &+
�2(1+R) '.

Hence we get

"\ :
n

i=0

*i xi+ y+&T \ :
n

i=0

*i xi+ y+"
�&y&+" :

n

i=0

*i xi& :
n

i=0

* iTxi"
+" :

n

i=0

*iTxi&T \ :
n

i=0

*ix i+"+"T \ :
n

i=0

*i xi+&T \ :
n

i=0

*i xi+ y+"
�(3+') '+(1+') #&1(2(1+R) ')�=. K

Lemma 2. Let C be a closed, convex subset of a uniformly convex Banach
space. Then for each p # N, R>0 and =>0, there exist '>0 and N # N such
that for each pair T # Lip(C, 1+') and [xj, n : n # N, j=0, ..., p]/C & BR

satisfying

1
n+1

:
n

i=0

&xj, i+1&Txj, i&�' for all n�N and j=0, ..., p, (3.1)

there holds

1
n+1

:
n

i=0
" :

p

j=0

*j x j, i+1&T \ :
p

j=0

* j x j, i+"�=

for all n�N and * # 2 p.

Proof. Let R>0. Then there exists a function # which satisfies the
conditions in Proposition 1. Let p # N and let =>0. Then there exist '>0
and N # N satisfying

'+(1+') #&1 \ p( p+1)
2 \ 2R

N+1
+2(1+R) '++�=.
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Pick T # Lip(C, 1+') and [xj, i : i # N, j=0, ..., p]/C & BR satisfying
(3.1). Let n�N and * # 2 p. Since

&
1

1+'
&Txj, i&Txk, i&�&&x j, i+1&xk, i+1&+&xj, i+1&Txj,i &

+
'

1+'
&Txj, i&Txk, i&+&Txk, i &xk, i+1&,

we get

# \ 1
n+1

:
n

i=0

1
1+' " :

p

j=0

*j Txj, i&T \ :
p

j=0

* j x j, i+"+
�

1
n+1

:
n

i=0

# \ 1
1+' " :

p

j=0

*j Txj, i&T \ :
p

j=0

*j xj, i+"+
�

1
n+1

:
n

i=0

max
0� j<k� p \&xj, i&xk, i &&

1
1+'

&Txj, i&Txk, i&+
�

1
n+1

:
n

i=0

:
0� j<k� p \&xj, i&xk, i &&

1
1+'

&Txj, i&Txk, i&+
� :

0� j<k� p \
&xj, 0&xk, 0&&&xj, n+1&xk, n+1&

n+1
+2(1+R) '+

�
p( p+1)

2 \ 2R
N+1

+2(1+R) '+ .

So we obtain

1
n+1

:
n

i=0
" :

p

j=0

*j xj, i+1&T \ :
p

j=0

* j x j, i+"
� :

p

j=0

*j \ 1
n+1

:
n

i=0

&x j, i+1&Txj, i&+
+

1
n+1

:
n

i=0
" :

p

j=0

* j Txj, i&T \ :
p

j=0

* j x j, i+"
�'+(1+') #&1 \p( p+1)

2 \ 2R
N+1

+2(1+R) '++�=. K

The following is crucial to the proof of our theorems:
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Theorem 3. Let C be a closed, convex subset of a uniformly convex
Banach space. Then for each r>0, R�r and =>0, there exist '>0 and
N # N such that for each l # N and for each mapping T from C into itself
satisfying sup[&T nx& : n # N, x # C & Br]�R and T l # Lip(C, 1+'), there
holds

" 1
m+1

:
m

i=0

T ix&T l \ 1
m+1

:
m

i=0

T i x+"�=

for all m�lN and x # C & Br . Especially, for each r>0 and for each
asymptotically nonexpansive mapping T from C into itself with F(T ){<,

lim
l � �

lim
m � �

sup
x # C & Br

" 1
m+1

:
m

i=0

T ix&T l \ 1
m+1

:
m

i=0

T i x+"=0.

Proof. Let r>0, let R�r and let =>0. By Lemma 1, there exist $>0
and !>0 such that

(co(F$(S) & BR)+B$) & C/F=(S) for all S # Lip(C, 1+$)

and

(co(F!(S) & BR)+B! ) & C/F$(S) for all S # Lip(C, 1+!).

Choose {>0 and p # N such that R{�!�3, {�! and 2R�( p+1)�{2�2. By
Lemma 2, there exist '>0 and N # N such that for each S # Lip(C, 1+')
and [xj, n : n # N, j=0, ..., p]/C & BR satisfying

1
n+1

:
n

i=0

&x j, i+1&Sxj, i&�' for all n�N and j=0, ..., p,

there holds

1
n+1

:
n

i=0 " :
p

j=0

*j xj, i+1&S \ :
p

j=0

* j xj, i+"�
{2

2

for all n�N and * # 2 p.

We may assume '�! and PR�(N+1)�!�3. Let l # N and let T be a map-
ping from C into itself satisfying sup[&T n x& : n # N, x # C & Br]�R and
T l # Lip(C, 1+'). We may assume l{0. Let x # C & Br . Set yq

n=T q+nl x
for n # N and q=0, ..., l&1. We remark from the hypothesis of T that
&yq

n&�R for n # N and q=0, ..., l&1. Put wq
i =1�( p+1) � p

j=0 yq
j+i for

i # N and q=0, 1, ..., l&1. Let n�N and let q # [0, 1, ..., l&1]. Since
yq

j+i+1=T l yq
j+i for j=0, 1, ..., p, we get
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1
n+1

:
n

i=0

&wq
i &T lwq

i &�
1

n+1
:
n

i=0

&wq
i &wq

i+1&+
1

n+1
:
n

i=0

&wq
i+1&T l wq

i &

�
2R

p+1
+

{2

2
�{2.

Set Aq
n=[i # [0, ..., n] : &wq

i &T l wq
i &�{] and Bq

n=[0, ..., n]"Aq
n . Then we

have *Aq
n �(n+1)�{, where *Aq

n is the cardinality of the set Aq
n . Since

" 1
n+1

:
n

i=0

yq
i &

1
n+1

:
n

i=0

wq
i "

�
1

p+1
:
p

j=0
" 1

n+1
:
n

i=0

T q+ilx&
1

n+1
:
n

i=0

T q+( j+i) lx"
�

1
p+1

:
p

j=0

2jR
n+1

=
pR

n+1
,

we have

" 1
n+1

:
n

i=0

yq
i &

1
*Bq

n

:
i # B q

n

wq
i "

�" 1
n+1

:
n

i=0

yq
i &

1
n+1

:
n

i=0

wq
i "+" 1

n+1
:

i # Aq
n

wq
i "

+" 1
n+1

:
i # B q

n

wq
i &

1
*Bq

n

:
i # B q

n

wq
i "

�
p

n+1
R+

*Aq
n

n+1
R+

*Aq
n

n+1
R�!.

So by 1�*Bq
n � i # B q

n
wq

i # co F!(T l) & BR , we get

1
n+1

:
n

i=0

yq
i # (co(F!(T l) & BR)+B!) & C/F$(T l)

for all n�N and q=0, 1, ..., l&1. Let m�l(N+1). Choose n # N and
s # [0, ..., l&2] such that m=l(n+1)+s. Then n�N. Hence we obtain

1
m+1

:
m

i=0

T i x=
n+2
m+1

:
s

q=0
\ 1

n+2
:

n+1

i=0

yq
i ++

n+1
m+1

:
l&1

q=s+1
\ 1

n+1
:
n

i=0

yq
i +

# co(F$(T l) & BR) & C/F=(T l)

for all m�l(N+1) and x # C & Br . K
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In the rest of this section, we assume that C, T, [kn], [an], [bn], x and
[xn] are as in Theorem 2, we set a=limn (bn&1)�an and we set xn=x for
n=0, 1, ..., N0&1.

Lemma 4. Let [xni
] be a subsequence of [xn] and let + be a Banach

limit. Then there exists the unique element z of C satisfying

+i &xni
&z&2=min

y # C
+i &xni

& y&2 (3.2)

and the point z is a fixed point of T.

Proof. From Proposition 2, it is easy to see that there exists the unique
element z of C satisfying (3.2). If we can show limn � � T nz=z, then z is
a fixed point of T. Suppose limn T nz{z. Then there exists =>0 such that
for each m # N, there exists l�m satisfying &T lz&z&�=. Set R=
sup[&T mz& : m # N]. By Proposition 2, there exists $>0 such that

+i "xni
&

x+ y
2 "

2

�
1
2

(+ i &xni
&x&2++i &xni

& y&2)&$ (3.3)

for all x, y # C & BR with &x& y&�=. By the property of =, liml kl�1 and
Lemma 3, there also exists l # N such that &T lz&z&�=, (k2

l &1) +i &xni
&z&2

<$ and +i &xni
&T lz&2�+ i &T lxni

&T lz&2+$. From (3.3), we have

+ i "xni
&

T lz+z
2 "

2

�
1
2

(+i &xni
&T lz&2++i &xni

&z&2)&$

�+i &xni
&z&2+

1
2

((k2
l &1) +i &xni

&z&2&$)

<+i &xni
&z&2.

So we get a contradiction. This completes the proof. K

Lemma 5.

(xn&x, J(xn&z)) �
(bn&1)+

an
&xn&z&2

for all n�N0 and z # F(T).

Proof. Let n�N0 and let z # F(T ). Since an(xn&x)=(1&an)(1�(n+1)
�n

j=0 T j xn&xn) and z # F(T), we get

62 SHIOJI AND TAKAHASHI



(xn&x, J(xn&z)) =
1&an

an � 1
n+1

:
n

j=0

T jxn&xn , J(xn&z)�
=

1&an

an \� 1
n+1

:
n

j=0

T jxn&
1

n+1
:
n

j=0

T jz, J(xn&z)�
+(z&xn , J(xn&z))+

�
1&an

an \ 1
n+1

:
n

j=0

kj &xn&z&2&&xn&z&2+
�

(bn&1)+

an
&xn&z&2. K

Lemma 6. Each subsequence [xni
] of [xn] contains a subsequence of

[xni
] converging strongly to an element of F(T ).

Proof. Let [xni
] be a subsequence of [xn] and let + be a Banach limit.

There exists z # F(T ) satisfying (3.2). By Lemma 5, we get +i(xni
&x,

J(xni
&z))�(a)+ + i &xni

&z&2. This inequality and Proposition 3 yield

+i &xni
&z&2�

1
1&(a)+

+ i(x&z, J(xni
&z))�0.

By (2.1), there exists a subsequence of [xni
] converging strongly to z. K

Now we can prove our theorems.

Proof of Theorem 1. Taking, for example,

1
n+1

if bn�1,

an={- bn&1 if 1<bn�2,

1 if 2<bn ,

we may assume a�0 only in this proof. First we shall show that [xn]
converges strongly to an element of F(T ). By Lemma 6, we know that each
subsequence [xni

] of [xn] contains a subsequence of [xni
] converging

strongly to an element of F(T). Let [xni
] and [xmi

] be subsequences of [xn]
converging strongly to elements y and z of F(T ), respectively. We shall
show y=z. From Lemma 5, we have (xni

&x, J(xni
&z))�(bni

&1)+ �
ani

&xni
&z&2. So we get ( y&x, J( y&z)) �0. By the same argument, we

have (z&x, J(z& y)) �0. Adding these inequalities, we get &y&z&2�0,

63CONVERGENCE OF AVERAGED APPROXIMANTS



i.e., y=z. So [xn] converges strongly to an element of F(T). Hence we can
define a mapping P from C onto F(T ) by Px=limn � � xn , since x is an
arbitrary point of C. By the argument above, we have (x&Px, J(z&Px))
�0 for all x # C and z # F(T ). Therefore P is the sunny, nonexpansive
retraction by Proposition 4. K

Proof of Theorem 2. Let [xni
] be a subsequence of [xn] converging

strongly to an element y of F(T ). We shall show y=Px. By Lemma 5, we
have (xni

&x, J(xni
&Px)) �(bni

&1)+ �ani
&xni

&Px&2. So we get ( y&x,
J( y&Px))�(a)+ &y&Px&2. Hence we obtain

(1&(a)+) &y&Px&2�(x&Px, J( y&Px)) �0

by Proposition 4. From a<1, we have y=Px. Hence by Lemma 6, [xn]
converges strongly to Px. K

Proof of Theorem 3. Since T is nonexpansive, we have kn=1 for all
n # N and hence limn (bn&1)�an=0<1. So we obtain the desired result by
Theorem 2. K
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