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Let C be a closed, convex subset of a uniformly convex Banach space whose
norm is uniformly Gateaux differentiable and let 7 be an asymptotically nonexpan-
sive mapping from C into itself such that the set F(7) of fixed points of T is
nonempty. In this paper, we show that F(T) is a sunny, nonexpansive retract of C.
Using this result, we discuss the strong convergence of the sequence {x,} defined
by x,=a,x+(1—a,) 1/(n+1) ¥}, T/ x, for n=0, 1,2, ..., where xe C and {a,}
is a real sequence in (0, 1].  © 1999 Academic Press

1. INTRODUCTION

Let C be a subset of a Banach space. A mapping T from C into E is said
to be nonexpansive if |7x — Ty| < ||x — y|| for each x, ye C. A mapping T
from C into itself is said to be asymptotically nonexpansive if there exists
a sequence {k,} such that lim,k,<1 and ||T"x—T"y| <k, |x— y| for
each x, yeCand n=0,1, 2, ....

Let C be a closed, convex subset of a Banach space E. Let T be a non-
expansive mapping from C into itself such that the set F(7') of fixed points
of T is nonempty, let x be an element of C and for each 7 with 0 <7< 1,
let x, be the unique point of C which satisfies x,=tx + (1 —¢) Tx,. Browder
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[2] showed that {x,} converges strongly to the element of F(7) which is
nearest to x in F(T) as ¢|0 in the case when E is a Hilbert space. Reich
[8] extended Browder’s result to the case when E is a uniformly smooth
Banach space and he showed that F(T) is a sunny, nonexpansive retract
of C, i.e., there exists a nonexpansive retraction P from C onto F(T) such
that P(Px + t(x — Px))= Px for each xe C and >0 with Px + #(x — Px)
€ C. Recently, using an idea of Browder [ 2], Shimizu and Takahashi [10]
studied the convergence of another approximating sequence for an asymptoti-
cally nonexpansive mapping. Let 7 be an asymptotically nonexpansive
mapping with Lipschitz constants {k,} such that the set F(T) of fixed
points of 7'is nonempty. Let 0 <a <1, let b,=1/n 37_ (1 + |1 —k;| +e77)
and let a,=(b,—1)/(b,—1+a) for n=1,2, ... Let x be an element of C
and let x, be the unique point of C which satisfies x,=a,x+(1—a,) l/n
>i_1 T/x, forn=1,2, ... They showed that {x,} converges strongly to the
element of F(T) which is nearest to x in F(T) in the case when E is a
Hilbert space.

In this paper, we extend Shimizu and Takahashi’s result to a Banach
space. For an asymptotically nonexpansive mapping 7, we show that the
set F(T) of fixed points of 7 is a sunny, nonexpansive retract of C and the
sequence {x,} defined above converges strongly to an element of F(T).
Our results are the following:

THEOREM 1. Let C be a closed, convex subset of a uniformly convex
Banach space whose norm is uniformly Gateaux differentiable and let T be
an asymptotically nonexpansive mapping from C into itself such that the set
F(T) of fixed points of T is nonempty. Then F(T) is a sunny, nonexpansive
retract of C.

THEOREM 2. Let C be a closed, convex subset of a uniformly convex
Banach space whose norm is uniformly Gateaux differentiable, let T be an
asymptotically nonexpansive mapping from C into itself with Lipschitz
constants {k,} such that the set F(T) of fixed points of T is nonempty and
let P be the sunny, nonexpansive retraction from C onto F(T). Let {a,} be
a real sequence such that

n—

1
<1,

0<a,<]1, lim a,=0, and lim

n— o n—oo d,

where b,=1/(n+1) X7_o k; for n=0, 1, .... Let x be an element of C and let
x,, be the unique point of C which satisfies

1
n—i—lj

X,=a,x+ (1 —a,) Y T'x, (1.1)
=0
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for n=N,, where N, is a sufficiently large natural number. Then {x,}
converges strongly to Px.

Remark. The inequality lim, (b, —1)/a, <1 implies that there exists a
natural number N, such that (1—a,)b,<1 for n>=N,. So for n>=N,,
there exists the unique point x, of C which satisfies (1.1), since the
mapping 7, from C into itself defined by T,u=a,x+(1—a,)1l/(n+1)

?_o T’u satisfies | T,u—T,v| <(1—a,)b, |[u—v| for each u, ve C.

In the case when T is nonexpansive, we have the following:

THEOREM 3. Let C be a closed, convex subset of a uniformly convex
Banach space whose norm is uniformly Gdteaux differentiable, let T be a
nonexpansive mapping from C into itself such that the set F(T) of fixed
points of T is nonempty and let P be the sunny, nonexpansive retraction from
C onto F(T). Let {a,} be a real sequence such that 0<a,<1 and a, — 0.
Let x be an element of C and let x,, be the unique point of C which satisfies
(1.1) for n=0, 1, .... Then {x,} converges strongly to Px.

2. PRELIMINARIES AND NOTATIONS

Throughout this paper, all vector spaces are real and we denote by N,
the set of all nonnegative integers. For a real number «, we also denote
max{a,0} by (a),. We denote by 4", the set {i=(4¢, ..., 4,): 4;=0,

o= 1} for neN. For a subset C of a Banach space, we denote by
co C, the convex hull of C.

Let E be a Banach space and let r > 0. We denote by B,, the closed ball
in E with center 0 and radius r. E is said to be uniformly convex if for each
&> 0, there exists 0 > 0 such that ||(x + y)/2|| <1—¢ for each x, y € B, with
[x — y|| =e. Let C be a subset of E, let T be a mapping from C into E and
let £>0. By F(T) and F,(T), we mean the sets {xeC:x=Tx} and
{xe C:||x—Tx| <e}, respectively. Let k>0. We denote by Lip(C, k), the
set of all mappings from C into E satisfying ||Tx — Ty| <k ||x — y| for each
x, ye C. We remark that Lip(C, 1) is the set of all nonexpansive mappings
from C into E. The following is a useful proposition due to Bruck [5]:

PropOSITION 1. Let C be a closed, convex subset of a uniformly convex

Banach space. Then for each R >0, there exists a strictly increasing, convex,
continuous function y: [0, 00) —» [0, o0 ) such that y(0) =0 and

V<T<Z }vjxj> > AT,
=0 j=0

for allneN, Ae A", x4, ..., x, € C By, and Te Lip(C, 1).

>< max ([l —xg || = [ 7x;— Tx, )
0<j<k<n
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Let u be a continuous, linear functional on [/ and let (a4, a,,..)el®.
We write u,(a,) instead of u((aq, a;, ...)). We call u a Banach limit [ 1] when
w satisfies |u| =u,(1)=1 and u,(a,.,)=u,la,) for each (ay,a,,..)el®.
For a Banach limit, we know that

lim a,<p,(a,)<lim a, forall (ay, a,,..)el®. (2.1)

n— oo n— oo

We also know the following from Lemma in [11] and its proof; see also
[9, pp. 314-3157:

PrOPOSITION 2. Let C be a closed, convex subset of a uniformly convex
Banach space E. Let {x,} be a bounded sequence of E, let u be a Banach
limit and let g be a real valued function on C defined by

gy) = |x,—yI*>  foreach yeC.

Then g is continuous and convex, and g satisfies lim,, _ ., g(y)= .
Moreover, for each R>0 and ¢ >0, there exists 6 >0 such that

—0

g <y +Z> < g(y)+g(z2)
2 2

forall y, ze Cn Bg with |y —z| >e.

Let E' be the topological dual of E. The value of ye E' at xe E will
be denoted by {x, y>. We also denote by J, the duality mapping from E
into 2% ie,

Ix={yeE:{x, y>=|x|*=1yl*} foreach xeE.

Let U={x€E: |x|=1}. E is said to be smooth if for each x, y € U, the
limit
l’ —
lim I x + 2yl = llx]|

lim ; (2.2)
exists. The norm of F is said to be uniformly Géateaux differentiable if for
each ye U, the limit (2.2) exists uniformly for xe U. E is said to be
uniformly smooth if the limit (2.2) exists uniformly for x, y e U. It is well
known that if E is smooth then the duality mapping is single-valued and
norm to weak star continuous. In the case when the norm of E is uniformly
Gateaux differentiable, we know the following from [12, Lemma 1]; see
also [6, p.586]:
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ProOPOSITION 3. Let C be a convex subset of a Banach space E whose
norm is uniformly Gateaux differentiable. Let {x,} be a bounded subset
of E, let z be a point of C and let u be a Banach limit. Then

Hn Hxn_ZHZZmin:un Hxn_yH2
yeC

if and only if
Uly—z,J(x,—z)) <0  forall yeC.

Let C be a convex subset of E, let K be a nonempty subset of C and let
P be a retraction from C onto K, i.e., Px=x for each xe K. A retraction
P is said to be sunny if P(Px+ t(x— Px))= Px for each xe C and >0
with Px+ t#(x — Px) e C. If the sunny retraction P is also nonexpansive,
then K is said to be a sunny, nonexpansive retract of C. Concerning sunny,
nonexpansive retractions, we know the following [3, 7]:

PROPOSITION 4. Let C be a convex subset of a smooth Banach space, let
K be a nonempty subset of C and let P be a retraction from C onto K. Then
P is sunny and nonexpansive if and only if

(x=Px,J(y—Px)><0  forall xeC and yek

Hence there is at most one sunny, nonexpansive retraction from C onto K.

3. PROOF OF THEOREMS
To prove Lemmas 1, 2, 3 below, we use the methods employed in [4, 5].

LeMMA 1. Let C be a closed, convex subset of a uniformly convex Banach
space. Then for each R>0 and ¢ >0, there exists n >0 such that

(co(F(T)nBg)+B,)nCc F(T)

for all TeLip(C, 1+17).

Proof. Let R>0. Then there exists a function y which satisfies the
conditions in Proposition 1. Let ¢ > 0. Choose # >0 such that (3+7#) 7+
(1+7)y~%2(1+R)n)<e. Let TeLip(C,1+47). Pick Aed” xq,..,x,€
F/(T)nBr and yeB, such that X7  A,x;,+yeC. Since 1/(1+7)

TeLip(C, 1), we have
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(|7 0) = 80

1
< max | x;— x5l ——— 1Tx;— Tx,|
1+y

O<i<j<n

n
< max X;i—Tx;|| +|x;, —Tx; || + —— | Tx;— Tx;
0<i<,<n<' I+ =Tyl + | ,|>

<2(1+R)7.

Hence we get

<2><

<lyl+

M=
>
&=
+
~<
~

Il
=)

+ iﬂviTxi— <Z lx> T iﬂux>—T<i,1ixi+y>
<SG+mn+0+n)y'2UI+R) n)<e 1

LemMmA 2. Let C be a closed, convex subset of a uniformly convex Banach
space. Then for each pe N, R>0 and ¢ >0, there exist n >0 and N e N such
that for each pair TeLip(C, 1+n) and {x;, neN, j=0, .., p} = CnBg
satisfying

n+lz Ixji:1—Tx; | <n  forall n=N and j=0,..,p, (3.1)

there holds

Ly

n+1.%,

p
Z Xjiv1— <Z ijxj,,-> sé¢
j=0

j=0

forall n=N and A€ AP,

Proof. Let R>0. Then there exists a function y which satisfies the
conditions in Proposition 1. Let pe N and let £ > 0. Then there exist # >0
and N e N satisfying

p(p+1)< 2R

’7+(1+77)V1<2 N+1+2(1+R)17>><6.
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Pick TeLip(C,1+#5) and {x;;:ieN,;j=0,.., p} cCn By satisfying
(3.1). Let n> N and A€ 4”. Since

TQT7HTX —Txp il < = 1x) 01— X it |+ 17 00— Tl
T, = T o+ T s — i
1+'] I 1 S L , 1 S L
we get
1 i 1 P a 4 P
—_— Tx, .—T X;
y<n+1i§01+’7 jgo ! > <j§0 / Jl>>
<oy, z AT T<§ >>
~ x —
’H'li:o L+7 Z
<y <| |———Tx,,— T |>
< max X=X il ——— I Tx; ;— Txy s
n—i—ll ) 0<j<k<p /> ks 147 k,
<| I — 1 1Tx;,—T. |>
Xii ™ Xk, i T X X, i
n+1,2 oc/Shep l+7
< ¥ <|xj,0_xk,0|_|xj,n+1_xk,n+l|+2(1+R)}7>
0<j<k<p n+1
p(p+1)/ 2R
<———+2(1+R .
2 Neit (1+R)7n

So we obtain

1 n P; P
TP PAANEL AN
P 1 n
Szlj< 12 |xj,i+1_ij,i|>
j=0 i=0
1 n
) S 4 Tx, —T<Z/1x >
1 =01,=0 j=0
B p(p+1)< 2R >>
< 1 ! =~ +2(1+R )
f7+(+'7)y<2 N++(+) A |

The following is crucial to the proof of our theorems:
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THEOREM 3. Let C be a closed, convex subset of a uniformly convex
Banach space. Then for each r>0, R=r and ¢>0, there exist n>0 and
NeN such that for each le N and for each mapping T from C into itself
satisfying sup{||T"x|:neN,xe CnB,} <R and T'eLip(C, 1 +1), there
holds

z Tix TI<ZT’ )

for all m=IN and xe Cn B,. Especially, for each r>0 and for each
asymptotically nonexpansive mapping T from C into itself with F(T) # &,

m+l

lim [im  sup =0.

-0 m—ow xeCnB,

z Tix— T1<ml z Tix >

Proof. Let r>0, let R=r and let ¢>0. By Lemma 1, there exist § >0
and ¢ >0 such that

m—i—l

(co(Fs(S)nBg)+ Bs) n Cc< F,(S) forall SeLip(C, 1+9)
and
(co(FAS)NBg)+ B:)nCc F4S) forall SeLip(C,1+¢).

Choose 7>0 and p e N such that Rt <¢/3, t<¢& and 2R/(p + 1) <7%/2. By

Lemma 2, there exist #>0 and Ne N such that for each SeLip(C, 1 +7)
and {x, ,:neN, j=0, .., p} = Cn By satisfying

1

n+1

HM:

H i1 —SX; <7 forall n>N and ;j=0,..p

i

there holds

1 n
n+1lZO

p P .52

Jj=0

forall n=N and Aie4”

We may assume # < ¢ and PR/(N+1)<¢&/3. Let /e N and let T be a map-
ping from C into itself satisfying sup{||7” x[|:ne N, xe CnB,} <R and
T'eLip(C, 1 +7). We may assume /#0. Let xe Cn B,. Set y7=T9"" x
for neN and ¢=0,..,/—1. We remark from the hypothesis of T that
[y <R for neN and ¢=0,..,/—1. Put wi=1/(p+1)37_,yi,, for
ieN and ¢=0,1,..,/—1. Let n>N and let ¢e{0,1,. l—l} Since
Vi = Tyj+lfor] 0,1, .. p, we get
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n

Z Iwe, ,— T'wi|

N

n
!
—T'wi| < ; wi—wi || +— i,

o n+1
< 2R +12< )
Spr1 2T

n}:llwf—T'w?| =1} and BI= {0, ..,n}\A4%. Then we

Set A2={ie {0, .., n}:
have #A4%/(n+1) <7, where # AZ is the cardinality of the set 4Z. Since

n+l, n+1 .=,
gLi 1 iTq-kilx 1 iTlI'F(]‘H)l
p+1, 5 n+1,5 n+1.7,
1 i2jR PR
p+1,=55n+1 n+l
we have
1 1
n+g§ﬂ_#mgéf

1 n
< ‘I Wq
n+11§0 ' I’l+1 Z zeAZ
—+ : wi
n+1iezl:?q ' Zlez‘éq
Al Al
< P R+# - +# “R<E.
n+1 n+1 n+1

So by 1/# B4 ZieBg wieco F{T')n By, we get

€ (co(FAT")  Bg) + B:) n C= Fy(T"

Z
for all =N and ¢=0,1,..,/—1. Let m=IN+1). Choose neN and
1—2} such that m=I(n+1)+s. Then n>N. Hence we obtain

se {0, ...,
1 n+1 n+1 I—1 1
q q
2 '>+ 2 <n~|—1 y,->

s

HM:

1 mo n+2
- T'x =
m+1i§‘0 m+1q§o<n+2i—0 l m+1q=5+1
eco(Fs(T) N Br) N C= F(T')

forallm>=I(N+1)and xeCnB,. |
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In the rest of this section, we assume that C, 7, {k,}, {a,}, {b,}, x and
{x,} are as in Theorem 2, we set a =1lim,, (b, —1)/a, and we set x, = x for
n=0,1,..,Ny— 1.

Lemma 4. Let {x,} be a subsequence of {x,} and let u be a Banach
limit. Then there exists the unique element z of C satisfying

#; %, — 2|1 =min g |x, — y[? (32)
yeC

and the point z is a fixed point of T.

Proof. From Proposition 2, it is easy to see that there exists the unique
element z of C satisfying (3.2). If we can show lim,,_, ., 7"z =z, then z is
a fixed point of 7. Suppose lim, 7"z # z. Then there exists ¢ >0 such that
for each meN, there exists />m satisfying ||T'z—z| >e Set R=
sup{ | 7™z||: me N}. By Proposition 2, there exists 6 >0 such that

21

xX+y
Xy, — <5 1%, = X112+ 2 1%, = ¥II?) =6 (33)

n; 2

Hi

for all x, ye Cn By with | x — y|| >e. By the property of ¢, lim, k,<1 and
Lemma 3, there also exists /e N such that | 7'z —z|| > ¢, (k] — 1) u; | x,, — 2]
<o and p; |x, — T’z > <p,; | T'x, — T'z||* + 6. From (3.3), we have
T'z+4z|?
n; 2

X

1
Hi <5 (s 1%, = T2 012 + s |1, — 211%) — 6

|
SHi |\xni—z|\2+§((k12— D pi x,,—z[?—0)
<t [, — 2%
So we get a contradiction. This completes the proof. ||

LEMMA 5.

(o Iy =2y <P D

n

1%, — 2|12
forall n=N, and zeF(T).

Proof. Let n=N,and let ze F(T). Since a,(x,—x)=(1—a,)(1/(n+1)
?_o T’/ x,—x,) and ze F(T), we get
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l—a,

<xn_x9 J(xn_z)> =

< ! 1 i zj,,—xn,J(xn—z)>

a,

+<Z_xn’ J(xn_z)>>

1—a 1 r
< z k; —z|]2— —z|?
) <n+1]_§) S 1, — 217 = 1 x,, Z|>
(b,—1)
< x,—z|% 1
a

n

LemMA 6. Each subsequence {x,} of {x,} contains a subsequence of
{x,} converging strongly to an element of F(T).

Proof. Let {x,} be a subsequence of {x,} and let 4 be a Banach limit.
There exists ze F(T) satisfying (3.2). By Lemma 5, we get u<x, —x,
J(x,,—2)) <(a) 4 u; \lx,,i—z\\z. This inequality and Proposition 3 yield

M ”xni_z”z< ﬂi<x—Z,J(xni—Z)><O.

1 —(a),
By (2.1), there exists a subsequence of {xni} converging strongly to z. ||
Now we can prove our theorems.

Proof of Theorem 1. Taking, for example,

1
it b,<l,
n+1
D= Sba—1 it 1<b,<2,
1 if 2<b,,

we may assume a <0 only in this proof. First we shall show that {x,}
converges strongly to an element of F(7). By Lemma 6, we know that each
subsequence {x,} of {x,} contains a subsequence of {x,} converging
strongly to an element of F(T). Let {x, } and {x,, } be subsequences of {x,}
converging strongly to elements y and z of F(T), respectively. We shall
show y=z. From Lemma 5, we have {(x, —x, J(x, —z))<(b,—1),/
Ay, Hx,,i—zl\z. So we get (y—x,J(y—=z)) <0. By the same argument, we
have {z—x, J(z— y)> <0. Adding these inequalities, we get ||y —z||*> <0,
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ie, y=z.So {x,} converges strongly to an element of F(7). Hence we can
define a mapping P from C onto F(T) by Px=Iim,, . Xx,, since x is an
arbitrary point of C. By the argument above, we have {x — Px, J(z — Px))
<0 for all xe C and ze F(T). Therefore P is the sunny, nonexpansive
retraction by Proposition 4. ||

Proof of Theorem 2. Let {x,} be a subsequence of {x,} converging
strongly to an element y of F(7). We shall show y = Px. By Lemma 5, we
have {x, —x, J(x,,— Px)) <(b, — 1), /a, Hxni—Ptz. So we get {y—ux,
J(y —Px)) <(a), ||y — Px||*> Hence we obtain

(1—(a) ;) |y —Px|I><{x—Px, J(y = Px)) <0

by Proposition 4. From a <1, we have y = Px. Hence by Lemma 6, {x,}
converges strongly to Px. |

Proof of Theorem 3. Since T is nonexpansive, we have k,=1 for all
ne N and hence lim,, (b,,—1)/a, =0 < 1. So we obtain the desired result by
Theorem 2. ||
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